A peptide derived from bee venom-secreted phospholipase A2 inhibits replication of T-cell tropic HIV-1 strains via interaction with the CXCR4 chemokine receptor.
نویسندگان
چکیده
We have previously shown that secreted phospholipases A2 (sPLA2) from bee and snake venoms have potent anti-human immunodeficiency virus (HIV) activity. These sPLA2s block HIV-1 entry into host cells through a mechanism linked to sPLA2 binding to cells. In this study, 12 synthetic peptides derived from bee venom sPLA2 (bvPLA2) have been tested for inhibition of HIV-1 infection. The p3bv peptide (amino acids 21 to 35 of bvPLA2) was found to inhibit the replication of T-lymphotropic (T-tropic) HIV-1 isolates (ID(50) = 2 microM) but was without effect on monocytotropic (M-tropic) HIV-1 isolates. p3bv was also found capable of preventing the cell-cell fusion process mediated by T-tropic HIV-1 envelope. Finally, p3bv can inhibit the binding of radiolabeled stromal cell-derived factor (SDF)-1alpha, the natural ligand of CXCR4, and the binding of 12G5, an anti-CXCR4 monoclonal antibody. Taken together, these results indicate that p3bv blocks the replication of T-tropic HIV-1 strains by interacting with CXCR4. Its mechanism of action however appears distinct from that of bvPLA2 because the latter inhibits replication of both T-tropic and M-tropic isolates and does not compete with SDF-1alpha and 12G5 binding to CXCR4.
منابع مشابه
Mutation of Asp and Asp of the Chemokine Receptor CXCR4 Impairs Its Coreceptor Function for Human Immunodeficiency Virus-1 Entry and Abrogates the Antagonistic Activity of AMD3100
The bicyclam AMD3100 is a highly potent and selective CXCR4 antagonist with strong antiviral activity against human immunodeficiency virus (HIV)-1 and HIV-2, which use CXCR4 as coreceptor for host cell entry. Here, we investigated the interaction of AMD3100 with CXCR4 at the molecular level by mutational analysis. We established a set of stably transfected U87.CD4 cell lines expressing differen...
متن کاملBlockade of CC chemokine receptor 5 (CCR5)-tropic human immunodeficiency virus-1 replication in human lymphoid tissue by CC chemokines.
The CC chemokines MIP-1alpha, MIP-1beta, and RANTES suppress replication of certain HIV-1 strains in cultured PBMC and T cell lines by blocking interaction of gp120 with CC chemokine receptor 5 (CCR5). However, the same chemokines can enhance HIV-1 replication in cultured macrophages. The net effect of chemokines on HIV-1 infection in intact lymphoid tissue, the major reservoir of HIV-1 in vivo...
متن کاملSelective CXCR4 antagonism by Tat: implications for in vivo expansion of coreceptor use by HIV-1.
Chemokines and chemokine receptors play important roles in HIV-1 infection and tropism. CCR5 is the major macrophage-tropic coreceptor for HIV-1 whereas CXC chemokine receptor 4 (CXCR4) serves the counterpart function for T cell-tropic viruses. An outstanding biological mystery is why only R5-HIV-1 is initially detected in new seroconvertors who are exposed to R5 and X4 viruses. Indeed, X4 viru...
متن کاملDissociation of the signalling and antiviral properties of SDF-1-derived small peptides
BACKGROUND The chemokine receptor CXCR4 (a receptor for the Cys-X-Cys class of chemokines) is a CD4-associated coreceptor for T-cell-tropic strains of human immunodeficiency virus 1 (HIV-1) and represents a target for antiviral therapy. Infection by T-tropic HIV-1 can be blocked by stromal-cell-derived factor-1 (SDF-1), the natural ligand of CXCR4. The broad variety of cells expressing CXCR4 an...
متن کاملA Small-molecule Inhibitor Directed against the Chemokine Receptor CXCR4 Prevents its Use as an HIV-1 Coreceptor
The chemokine receptor CXCR4 is the major coreceptor used for cellular entry by T cell- tropic human immunodeficiency virus (HIV)-1 strains, whereas CCR5 is used by macrophage (M)-tropic strains. Here we show that a small-molecule inhibitor, ALX40-4C, inhibits HIV-1 envelope (Env)-mediated membrane fusion and viral entry directly at the level of coreceptor use. ALX40-4C inhibited HIV-1 use of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 60 2 شماره
صفحات -
تاریخ انتشار 2001